Cognitive Decline, Limited Awareness, Imperfect Agency, and Financial Well-being

John Ameriks¹, Andrew Caplin², Minjoon Lee³, Matthew D. Shapiro⁴ and Christopher Tonetti⁵

¹The Vanguard Group, Inc.

²New York University

³Carleton University

⁴University of Michigan

⁵Stanford GSB

CIRANO-CIREQ-RSI-CREEi Workshop on Ageing April 28, 2022

Acknowledgements

- Survey supported by the Vanguard Group, Inc.
- The views expressed herein are those of the authors and do not necessarily reflect the views of The Vanguard Group, Inc.

- Americans responsible for own financial well-being in late life.
- Big financial decisions faced at the end of life: Estate planning, care arrangements, etc. Hard to set complete contingency plans.
- Much concern with loss of financial capability due to cognitive decline at this crucial moment. (Langa et al., 2008; Chandra et al., 2020)

- Transfer of control to an agent as a potential solution.
- Potential and limits hinge on:
 - 1. Quality of the agent
 - 2. How likely the agent will be available
 - 3. Timing of transfer of control to the agent

What we do:

- Present survey evidence on factors shaping potential and limits of agency.
- Quantitative measures allow us to calculate expected welfare loss due to poor financial decisions.
- Construct a model of cognitive decline, awareness, and agency.

Survey evidence shows:

- High confidence in the quality and availability of the agent
- But...

The problem might be the timing of the transfer of control

- Some quotes (rephrased) from online chats after the Pilot survey:
 - My mom, who is very old, was refused renewal of her driver's license because she failed the vision test. Her response was to sue the DMV for incompetence. I sincerely hope for self-driving cars before I get to that stage.
 - I would hope that financial institutions would take a responsible approach to abnormal changes in behavior by a long-term client.
- Pilot survey also reveals concern about not noticing own cognitive decline.

Timing of transfer and well-being:

- We use hypothetical survey questions to learn respondents' concerns about the timing of the transfer.
- Many believe that transfer of control at a sub-optimal time is likely.
- Transfer at the wrong time is perceived to have a large negative impact on financial well-being.
- We calibrate the model to capture the delayed transfer which many see as likely.

Financial literacy and mistakes late in life

- Agarwal et al. (2009), Korniotis and Kumar (2011), Lusardi and Mitchell (2014), Lusardi, Mitchell, and Curto (2014), Angrisani and Lee (2018), Kim, Maurer, and Mitchell (2019)
- Financial frauds aiming older individuals
 - Choi, Kulick, and Mayer (2008), Egan, Matvos, and Seru (2019), DeLiema et al. (2020)
- Unnoticed cognitive decline
 - Gerontology: Okonkwo et al. (2008), Nicholas et al. (2021), Sunderaraman et al. (forthcoming)
 - Economics: Finke, Howe and Huston (2016), Gamble et al. (2015), and Mazzonna and Peracchi (2020)

Remainder of the talk:

- Survey
- Model
- Welfare

Implemented in two phases

Pilot survey (December 2019, N=264)

- Focuses more on the quality of agents
- Follow-up chats with respondents to further explore their concerns
- Main survey (July 2020, N=2,489)
 - Focuses more on the timing of transfer of control

All the results are from the Main survey unless noted otherwise.

VRI sample roughly represents the top 50% in wealth distribution among older Americans (Ameriks et al., 2014).

"Cognitive decline means a deterioration in your abilities in:

- Remembering things
- Learning new things in general
- Making decisions on everyday matters
- Handling financial matters (for example, your pension or dealing with the bank)
- Using your intelligence to reason things through"

% Chance of having	25-pctile	<u>Median</u>	75-pctile	<u>Mean</u>	<u>N</u>
Cognitive decline for \geq 1 year Cognitive decline for \geq 5 years	5	15	55	30	2,489
	5	15	45	29	2,489

Likely agent:

- "Who do you think is most likely to make financial decisions on your behalf if you have significant cognitive decline?" (No spouse/partner available)
 - A child: 69.8%
 - A sibling: 9.7%
 - A trustee/an institution: 8.7%
 - A grandchild: 0.6%
 - Others: 9.2%
 - None: 1.8%

Quality of the agent:

How good your agent would be at	Excellent	Very good	Good	Fair or Poor
Understanding your needs & desires	44.1%	38.5%	13.8%	3.5%
Understanding your fin. situation	48.4%	33.3%	14.8%	3.5%
Understanding fin. matters in general	48.4%	32.4%	15.1%	4.1%
Pursuing your interest	56.7%	30.2%	10.2%	3.0%

Quantitative measures from the Pilot survey reveal that:

Agents are almost as good as self without cognitive decline.

Detail

% Chance of	25-pctile	Median	75-pctile	Mean	<u>N</u>
The agent being available	55	85	100	76	2,489

Key points of the hypothetical scenario on the timing of transfer:

- Last five years of life
- Have mild cognitive decline in the first year.
- Subjective progression of cognitive decline during the rest of the following five years.
- (If coupled) Outlived your spouse/partner.
- Have wealth of \$W (the nearest multiple of \$500K from to actual wealth). Following decisions need to be made:
 - How to spend (routine spending, non-routine spending, LTC, etc.)
 - Saving for future and managing investment
 - Giving to relatives, friends, or charities

Responses on optimal timing of transfer:

- Immediately at the onset of cognitive decline: 8.0%
- During further decline, but before you completely lose the ability to manage your finances: 83.9%
- When you completely lose the ability to manage your finances: 8.1%

It may happen at the wrong time:

% Chance of	25-pctile	<u>Median</u>	75-pctile	<u>Mean</u>	<u>N</u>
Delayed transfer	15	25	55	35	2,293
Early transfer	5	25	35	24	2,295

Why at the wrong time?

Branching based on what they are more worried about:

- Delayed transfer: 60.6%
- Early transfer: 36.0%

Measuring compensating variation for transfer at the wrong time (in the delay branch):

- Scenario 1: Transfer at the ideal time
- Scenario 2: Delayed transfer

"At what level of resources would you be **just as well off** with the spending and saving decisions under **Scenario 2** as with those under **Scenario 1** with **\$500,000**?"

Measured compensating variation (in % of \$W) (i.e., $\bar{\nu}(W) = \hat{\nu}((1 + x)W)$).

Welfare cost (% of \$W)	25-pctile	<u>Median</u>	75-pctile	<u>Mean</u>	<u>N</u>
Delayed transfer	0	19	34	18	1,465
Early transfer	0	13	27	10	859

 Cf. Mazzona and Peracchi (2020): Unaware cognitive decline results in 10% loss of wealth among wealthy, stockholders.

Credibility

- Simple, stylized model of uncertainty about future cognitive state and awareness of it with imperfect agency.
- Model of big irreversible mistake that is more likely when more declined.
 - Captures the possibility of making big financial mistakes, being a victim of financial fraud, etc.
- Uncertainty about awareness of cognitive decline puts a significant limit on the role of agency.

T-period model.

- Cognitive ability: $\theta_t \in \{\theta^1, \cdots, \theta^N\}$, with:
 - $\blacktriangleright 1 > \theta^1 > \theta^2 > \cdots > \theta^N > 0$
 - $\theta_1 = \theta^1$ (mild CD in the first period)
- Cognitive ability evolves based on the non-increasing 1st-order Markov process, π_{θ'|θ}.

- Flow utility is given as $U(\cdot)$, which does not depend on θ .
- ► There are two options available in the choice set without the agent: $X = \{\bar{x}, \underline{x}\}$.
- Preference is such that: $U(\bar{x}) > U(\underline{x})$.

- Bad irreversible outcome triggered by a bad financial choice, with two options {G, B}.
- If *B* is chosen, then the choice set becomes X_B = {<u>x</u>} for the remaining periods.

Forced to choose the worst option from the next period.

- If G is chosen, then the choice set X is still intact in the next period.
- The chance of choosing *B* is 1θ .
 - Cognitive decline raises the chance of *B*.

- Can transfer to the agent at any time
 - No involuntary transfer even with cognitive decline.
- The agent will choose x^A from now on.
- $U(\bar{x}) > U(x^A) > U(\underline{x})$: the principal faces a trade-off.
- Utility cost of using the agent: $D(\theta) \ge 0$, with $D'(\theta) \ge 0$.

- At the beginning of each period, the principal learns about the true value of θ with the probability ζ (for simplicity, independent of θ).
- When no learning, Bayesian updating on θ .
- Principal may decline without noticing it.
- We solve the model and compare the timing of the transfer with optimal timing under full information ($\zeta = 1$).
- Calibration determined by the survey evidence.

Model results

Our model calibrated based on the survey generates the following key observations: Calibration

- Model has four states: $\{\theta^1, \theta^2, \theta^3, \theta^4\}$.
- Optimal timing of transfer under full information is as soon as reach θ².
- 40% chance of failing to notice decline at the optimal timing of transfer.

43% in the survey.

 35% chance of delaying transfer compared to the optimal timing under full information.

35% in the survey.

Average welfare cost of a delayed transfer equivalent to 15% reduction in consumption

18% in the survey.

Key frictions: limited awareness of cognitive decline and utility cost of using the agent when capable

Welfare

- Conditional on having cognitive decline, transfer at the wrong time causes significant welfare loss.
- But how much do current respondents (unsure of future cognitive decline) care about this? The answer also depends on:
 - Welfare cost and chance of having transfer at the wrong time conditional on having cognitive decline
 - Chance of having cognitive decline (and outliving the spouse)
 - Marginal value of resources under cognitive decline
 Formula

We have measures of all these elements at the individual level. <a>SSO

Welfare

Welfare

Conclusion

- Late in life, households face risk of losing financial capability when they need to make big financial decisions.
- Agency is a potential solution for this problem ...
 - ... but there are real worries about failing to notice decline and transferring at the wrong time.
- There is a strong need for innovations that can improve the timing of the transfer.
 - Again, from the online chats: I would hope that financial institutions would take a responsible approach to abnormal changes in behavior by a long-term client.

Vanguard Research Initiative

- Collaboration of U Michigan, NYU, and Vanguard.
- Goal: Examine decisionmaking of older Americans with some financial wealth.
- Run (almost) annual surveys on a large sample of account holders at Vanguard.

Vanguard Research Initiative

Fielded seven surveys so far:

- Survey 1 (2013): Wealth and portfolio.
- Survey 2 (2013): Annuity and long-term care.
- Survey 3 (2014): Family, bequests, and transfers.
- Survey 4 (2015): Late-life work and transition to retirement.
- Survey 5 (2016): Wealth and portfolio revisited.
- Survey 6 (2018): Late-life work and transition to retirement revisited.
- Survey 7 (2020): Cognitive decline.

Back

Calibration: model parameters

- T: number of years
 - Set to 5 based on the scenario in the survey.
- $\{\theta^1, \cdots, \theta^N\}$: cognitive state space
 - $\{\theta^1, \dots, \theta^4\} = \{0.99, 0.95, 0.90, 0.80\}$. Start with θ^1 (mild cognitive decline).
- $\pi_{\theta'|\theta}$: cognitive state transition matrix
 - ► $\pi_{\theta^j|\theta^j} = 0.7$, $\pi_{\theta^{j+1}|\theta^j} = 0.3$, and the transition probability is zero for other case. In other words, it deteriorate by one grid with 30% chance.
 - This probability is disciplined by the chance of a delayed transfer.

Calibration: model parameters

- $\bar{x}, \underline{x}, x^A$: quality of decisions
 - $\bar{x} = 1$, $\underline{x} = 0.04$, $x^A = 0.87$
 - Consistent with $\bar{x} > x^A >> \underline{x}$ from the pilot survey.
 - ► $U(x^*) = 1$, $U(\tilde{x}) = -25$, $U(x^A) = 0.85$ under the CRRA utility function.
- \triangleright ζ : learning probability (Calvo parameter)

- Disciplined by the chance of not noticing own decline at the ideal timing of transfer.
- $D(\theta)$: utility cost of using the agent
 - $D(\theta_1) = 1.5$, $D(\theta_2) = 0.7$, and $D(\theta_3) = D(\theta_4) = 0$.
 - Equivalent to reducing x^A from 0.87 to 0.38 and to 0.54.

Quality of the decision-makers

Welfare cost of DM being:

- 1. Your likely agent
- 2. Yourself with cognitive decline
- ... compared to yourself without cognitive decline

(i.e., $\nu(W) = \nu_{DM}([1 + x_W]W)).$

Welfare cost (% of \$W)	25-pctile	Median	75-pctile	Mean	<u>N</u>
Likely agent	0	3	25	13	268
Yourself with cog. decline	21	67	123	132	268

Why at a wrong timing?

A. For a delayed transfer <u>% Chance of</u> You not noticing your cognitive decline You not wanting to give up control Agent not noticing your cognitive decline Agent not being available	25-pctile 25 25 15 5	<u>Median</u> 45 45 25 15	75-pctile 55 65 55 35	<u>Mean</u> 42 44 33 23	<u>N</u> 2,293 2,293 2,293 2,293
B. For an early transfer <u>% Chance of</u> Agent taking control against respondent's preference	25-pctile 5	<u>Median</u> 25	75-pctile 35	Mean 26	<u>N</u> 2,294

Cost of a wrong timing

Welfare cost of transfer at a wrong timing: Measured as compensating variation (in \$) (i.e., $V_O(W) = V_W(W + x)$):

Welfare cost (in \$1,000)	25-pctile	Median	75-pctile	Mean	<u>N</u>
Delayed transfer	0	299	646	432	1,465
Early transfer	0	188	520	245	859

Back

Cost of a wrong timing

Welfare cost of a wrong timing \times probability of a wrong timing.

In % of \$W	25-pctile	<u>Median</u>	75-pctile	<u>Mean</u>	<u>N</u>
Delayed transfer	0	4.2	11.5	6.7	1,465
Early transfer	0	1.1	5.9	2.1	859
<u>In \$1,000</u>	25-pctile	Median	75-pctile	Mean	<u>N</u>
Delayed transfer	0	78	242	173	1,177
Early transfer	0	25	125	59	859

Back

Comprehension test results (full score: 6)

	25-pctile	<u>Median</u>	75-pctile	<u>Mean</u>	<u>N</u>
Score after 1st round Score after 2nd round	3	4	5	3.9	2,489
	5	6	6	5.5	2,489

Slightly larger welfare cost among those who understand better:

A. Welfare cost of a delayed transfer (in % of \$W)								
	25-pctile	Median	75-pctile	Mean	Ν			
			<u> </u>		_			
Got full score	1	20	34	20	1,101			
Didn't get full score	0	12	31	12	364			

B. Welfare cost of an early transfer (in % of \$W)

	25-pctile	<u>Median</u>	75-pctile	Mean	<u>N</u>
Got full score	0	17	29	12	570
Didn't get full score	-2	7	24	7	289

The share of "more concerned about an early transfer" (as opposed to a delayed transfer) increases if ...

- The agent is of lower quality (34% for ≥ median quality vs. 41% for < median quality)</p>
- The agent is not a child (35% for a child vs. 41% for a non-child)

A transfer earlier than the ideal would be costlier if...

- the quality of agents is lower
- the agent is less close

A. Welfare cost of a	n early tran	sfer by quali	ty of agent (in % of \$W)		
	25-pctile	Median	75-pctile	Mean	<u>N</u>
$\begin{array}{l} \text{Quality} \geq \text{median} \\ \text{Quality} < \text{median} \end{array}$	-10 0	7 17	25 29	6 13	394 465

B. Welfare cost of an early transfer by type of agent (in % of \$W)

	25-pctile	Median	75-pctile	Mean	<u>N</u>
$\begin{array}{l} \text{Agent} = \text{child} \\ \text{Agent} \neq \text{child} \end{array}$	-4	11	25	6	570
	0	18	34	17	289

Back

SSQ to measure preference under cognitive decline

Based on the approach used in Ameriks, Briggs, Caplin, Shapiro, and Tonetti (2020).

Hypothetical situation:

- At the beginning of last five years of life.
- May have cognitive decline (25%).
- Otherwise, similar to the situation assumed in the WTP question.

Respondents are asked to allocate resources between two lockbxes:

- Plan A: Pays \$1 for \$1 investment if do not experience a cognitive decline.
- Plan B: Pays \$4 for \$1 investment if experience a cognitive decline.

Ex-ante WTP calculation formula

We are looking for *x* such that:

$$(1 - \pi_{CD})V(W) + \pi_{CD}(1 - \pi_{wt})V_{opt}^{CD}(W) + \pi_{CD}\pi_{wt}V_{wt}^{CD}(W) = (1 - \pi_{CD})V((1 - x)W) + \pi_{CD}V_{opt}^{CD}((1 - x)W).$$

Under a first-order Taylor approximation, we get:

$$x = \frac{\tilde{x}\pi_{CD}\pi_{wt}(V_{opt}^{CD'}(W)/V'(W))}{(1-\pi_{CD}) + \pi_{CD}(V_{opt'}^{CD}(W)/V'(W))},$$

where \tilde{x} is the ex-post WTP. Back